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Abstract—A system capable of distributing periodic rewards
towards a pool of participants in proportion to their stake is a
key component for a wide range of practical applications, from
decentralized staking pools to dividend allocation in tokenized
organizations. We present an efficient way of initiating the trans-
actions required by such a system and discuss its implementation
as an Ethereum smart contract that complements a token contract
by adding a staking mechanism. Our implementation decouples
the reward distribution and withdrawal flows, makes use of a
memory-optimal algorithm to coordinate the reward allocation
and achieves O(1) time complexity for all the core functions of
the system. This approach scales to any number of registered
stakeholders and allows for reward distribution events that have
higher thoughput, higher granularity and generate an even load
on the underlying network.

I. INTRODUCTION

A promising use case for a blockchain-based smart con-
tracts platform such as Ethereum is the creation of custom
tokens that track fractional ownership or participation in an
underlying asset or organization and periodically distribute
rewards to the token holders, in direct proportion to the amount
of tokens they choose to stake.

We propose a scalable solution for implementing the
reward distribution logic through a staking contract on the
Ethereum platform. Both the stake and the rewards can be
quantified using any transferrable Ethereum-based tokens [1]
or ethers.

II. REWARDS IN BATCHED TRANSACTIONS

We start by outlining the core functions that a reward
distribution system needs to efficiently perform:

1) deposit(stake) and withdraw() for partici-
pants to manage their stake allocation in the system.

2) distribute(reward) for the organization to pay
back a reward that the system will distribute to the
participants.

In a naive implementation, the staking contract would
push fractional payments to all the participants each time a
reward gets distributed. However, in such an implementation
the distribute function would take O(N) time to compute,
where N is the number of participants.

Namely, there are two technical challenges that make this
process inefficient:

• In case of Ethereum, due to the way the EVM
works [2], it’s not possible to enumerate all partici-
pant addresses, when stored as a map. Thus, keeping

track of an iterable registry of participants and their
corresponding stake usually requires additional data
structures such as Linked or Double-Linked lists. [3]

• Iterating over all participants is prohibitively expen-
sive [4] for a registry contract that manages tens of
thousands of entries. In such a case, the relatively
small fraction of the reward that needs to be distributed
for each share doesn’t justify the gas costs incurred by
executing the entire series of operations on-chain.

This makes the naive approach unfeasible for handling a
large number of participants or frequent reward distribution
events.

III. PULL BASED REWARD DISTRIBUTION

Our proposal starts by modeling the reward distribution
system as a buffer that collects and temporarily stores the
rewards until they are explicitly withdrawn by each participant.

Instead of a push-based flow that splits and allocates
the rewards immediately to all the participants, our solution
stores the reward amounts and lets the participants make
arbitrary withdrawals in a pull-based manner. An algorithmic
optimization based of partial sum lookups allows for O(1)
implementations of all the core operations of the system. [5]

This strategy allows us to create staking contracts that
can handle a few orders of magnitude more participants,
support arbitrarily small rewards with granular (e.g. hourly)
distribution schedules and operate with a substantially smaller
on-chain computational overhead.

A. Reward model

We start by noting that absolute instants of the deposits,
withdrawals and distribution events are not relevant, as the
final outcome is only determined by the relative order of these
events.

Without loss of generality we consider only one deposit
action per address and only full withdrawals. Additional de-
posits to an existing address can be modeled as two separate
addresses while partial withdrawals can be modeled by two
simpler operations: a full withdrawal followed by a new
deposit.

Let’s consider the chronological order of all the deposit,
withdraw and distribute events. At a given instant t on
this timeline, let Tt be the sum of all active stake deposits. On
a distribute event for rewardt, a participant j with an
associated stakej will get a reward of:



rewardj,t = stakej ∗
rewardt

Tt
(1)

A simple implementation would iterate over all active
stake deposits and increase their associated reward. But such
a loop requires more gas per contract call as more deposits
are created, making it a costly approach. A more efficient
implementation is possible, in O(1) time. [6]

B. Factor out reward computation

The total reward earned by a participant j for its stake
deposit stakej is the sum of proportional rewards it extracted
from all distribution events that occurred while the deposit was
active:

totalrewardj
=

∑
t

rewardj,t = stakej ∗
∑
t

rewardt
Tt

(2)

where t iterates over all reward distribution events that
occurred while stakej was active. Let’s note this sum, from
the beginning of timeline until instant t:

St =

t∑
k=0

rewardk
Tk

(3)

Assuming stakej is deposited at moment t1 and then
withdrawn at moment t2 > t1, we can use the array St to
compute the total reward for participant j:

totalrewardj
= stakej ∗

t2∑
t=t1+1

rewardt
Tt

(4)

or,

totalrewardj
= stakej ∗ (St2 − St1) (5)

This allows us to compute the reward for each withdraw
event in constant time, at the expense of storing the entire St

array in the contract memory.

C. Optimizing memory usage

The memory usage can be further optimized by noting that
St is monotonic and we can simply track the current (latest)
value of S and snapshot this value only when we expect it to
be required for a later computation.

We will use a map S0[j] to save the value of S at the
time the participant j makes a deposit. When j will later
withdraw the stake, its total reward can be computed by
using the latest value of S (at the time of the withdrawal) and
the snapshot S0[j]:

totalrewardj = stakej ∗ (S − S0[j]) (6)

This strategy makes it possible to achieve both time opti-
mality and memory optimality, as for N participants it takes
O(N) memory to keep track of both the S0 value map and
the stake registry.

As memory usage no longer depends on the number of
distribute events, the algorithm is now suitable for very
fine grained distribution: daily, hourly or even at every mined
block.

D. Constant time algorithm

The algorithm will expose three methods:

• deposit to add a new participant stake.

• distribute to fan out reward to all participants.

• withdraw to return the participant’s entire stake
deposit plus the accumulated reward.

Algorithm 1: Constant Time Reward Distribution
function Initialization();
begin

T = 0;
S = 0;
stake = {};
S0 = {};

end
function Deposit (address, amount);
Input : set amount as the stake of address
begin

stake[address] = amount;
S0[address] = S;
T = T + amount;

end
function Distribute (r);
Input : Reward r to be distributed proportionally to

active stakes
begin

if T != 0 then
S = S + r / T ;

else
revert();

end
end
function Withdraw (address);
Input : address to withdraw from
Output: amount withdrawn
begin

deposited = stake[address];
reward = deposited * (S - S0[address]);
T = T - deposited;
stake[address] = 0;
return deposited+ reward

end

IV. NOTES AND FUTURE WORK

The stake and reward may be units of the same token
(e.g. PoS pools) or they may be different tokens. In practice,
most organizations will stake ERC20 tokens and distribute
either ether rewards (dividends) or other tokens (utility or
loyalty points). When different tokens are used, the withdrawal
action will execute two different transfers, instead of returning
deposited+ reward.

If the same token is used for quantifying both the stake and
the reward, the algorithm will not compound the reward. An
active user may effectively compound the reward by executing
a withdraw followed by a new deposit. We will examine the
possibility to automatically compound for all participants.



The algorithm is loop free so it can also be implemented
in Turing incomplete smart contract languages.
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